Impact of collimator leaf width and treatment technique on stereotactic radiosurgery and radiotherapy plans for intra- and extracranial lesions

نویسندگان

  • Q Jackie Wu
  • Zhiheng Wang
  • John P Kirkpatrick
  • Zheng Chang
  • Jeffrey J Meyer
  • Mei Lu
  • Calvin Huntzinger
  • Fang-Fang Yin
چکیده

BACKGROUND This study evaluated the dosimetric impact of various treatment techniques as well as collimator leaf width (2.5 vs 5 mm) for three groups of tumors -- spine tumors, brain tumors abutting the brainstem, and liver tumors. These lesions often present challenges in maximizing dose to target volumes without exceeding critical organ tolerance. Specifically, this study evaluated the dosimetric benefits of various techniques and collimator leaf sizes as a function of lesion size and shape. METHODS Fifteen cases (5 for each site) were studied retrospectively. All lesions either abutted or were an integral part of critical structures (brainstem, liver or spinal cord). For brain and liver lesions, treatment plans using a 3D-conformal static technique (3D), dynamic conformal arcs (DARC) or intensity modulation (IMRT) were designed with a conventional linear accelerator with standard 5 mm leaf width multi-leaf collimator, and a linear accelerator dedicated for radiosurgery and hypofractionated therapy with a 2.5 mm leaf width collimator. For the concave spine lesions, intensity modulation was required to provide adequate conformality; hence, only IMRT plans were evaluated using either the standard or small leaf-width collimators.A total of 70 treatment plans were generated and each plan was individually optimized according to the technique employed. The Generalized Estimating Equation (GEE) was used to separate the impact of treatment technique from the MLC system on plan outcome, and t-tests were performed to evaluate statistical differences in target coverage and organ sparing between plans. RESULTS The lesions ranged in size from 2.6 to 12.5 cc, 17.5 to 153 cc, and 20.9 to 87.7 cc for the brain, liver, and spine groups, respectively. As a group, brain lesions were smaller than spine and liver lesions. While brain and liver lesions were primarily ellipsoidal, spine lesions were more complex in shape, as they were all concave. Therefore, the brain and the liver groups were compared for volume effect, and the liver and spine groups were compared for shape. For the brain and liver groups, both the radiosurgery MLC and the IMRT technique contributed to the dose sparing of organs-at-risk(OARs), as dose in the high-dose regions of these OARs was reduced up to 15%, compared to the non-IMRT techniques employing a 5 mm leaf-width collimator. Also, the dose reduction contributed by the fine leaf-width MLC decreased, as dose savings at all levels diminished from 4 - 11% for the brain group to 1 - 5% for the liver group, as the target structures decreased in volume. The fine leaf-width collimator significantly improved spinal cord sparing, with dose reductions of 14 - 19% in high to middle dose regions, compared to the 5 mm leaf width collimator. CONCLUSION The fine leaf-width MLC in combination with the IMRT technique can yield dosimetric benefits in radiosurgery and hypofractionated radiotherapy. Treatment of small lesions in cases involving complex target/OAR geometry will especially benefit from use of a fine leaf-width MLC and the use of IMRT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of the high-definition multileaf collimator on linear accelerator-based intracranial stereotactic radiosurgery.

OBJECTIVES The impact of two multileaf collimator (MLC) systems for linear accelerator-based intracranial stereotactic radiosurgery (SRS) was assessed. METHODS 68 lesions formed the basis of this study. 2.5 mm leaf width plans served as reference. Comparative plans, with identical planning parameters, were based on a 5 mm leaf width MLC system. Two collimation strategies, with collimation fix...

متن کامل

Stereotactic Radiosurgery/Radiotherapy: A Historical Review

"Stereotactic" is an exact radiotherapy treatment modality which implements invasive and non-invasive facilities for improving precise dose delivery. Stereotactic refers to three-dimensional localization of a specific point in space by a unique set of coordinates that relate to a fixed external reference frame. An accurate delivery of radiation is attainable using these techniques with high pre...

متن کامل

Abstract ID: 18137 Title: Treatment of Multiple Brain Metastases Using Stereotactic Radiosurgery with Single-Isocenter Volumetric Modulated Arc Therapy: Comparison with Conventional Dynamic Conformal Arc and Static Beam Stereotactic Radiosurgery

ID: 18137 Title: Treatment of Multiple Brain Metastases Using Stereotactic Radiosurgery with Single-Isocenter Volumetric Modulated Arc Therapy: Comparison with Conventional Dynamic Conformal Arc and Static Beam Stereotactic Radiosurgery Purpose: To investigate the treatment of multiple brain metastases using stereotactic radiosurgery with single-isocenter volumetric modulated arc therapy (VMAT)...

متن کامل

The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity

PURPOSE We aim to evaluate the effects of multileaf collimator (MLC) leaf width (5 mm vs. 2.5 mm) on the radiosurgery planning for the treatment of spine lesions according to the modulated techniques (intensity-modulated radiotherapy [IMRT] vs. volumetric-modulated arc therapy [VMAT]) and the complexity of the target shape. METHODS For this study, artificial spinal lesions were contoured and ...

متن کامل

Implications of a high-definition multileaf collimator (HD-MLC) on treatment planning techniques for stereotactic body radiation therapy (SBRT): a planning study

PURPOSE To assess the impact of two multileaf collimator (MLC) systems (2.5 and 5 mm leaf widths) on three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and dynamic conformal arc techniques for stereotactic body radiation therapy (SBRT) of liver and lung lesions. METHODS Twenty-nine SBRT plans of primary liver (n=11) and lung (n=18) tumors were the basis of this study....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation Oncology (London, England)

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009